Управление движениями

Сокращая мышцы, мы изменяем, положение частей тела, т.е. производим движение. В двигательной деятельности человека различают непроизвольные движения, происходящие без участия сознания и представляющие собой безус-ловные рефлексы, либо автоматизированные двигательные навыки, а также произвольные движения – сознательно управляемые целенаправленные действия. Произвольные движение человека сознательно управляются (контролируются) нервной системой посредством механизма сенсорно-двигательной интеграции. Любое движение можно рассматривать как двигательную реакцию на определенный внешний или внутренний стимул.

Сенсорно-двигательная интеграция рис. 1. Выполнение двигательных заданий осуществляется в результате взаимодействия сенсорного и двигательного отделов нервной системы:

fisio10

1) сенсорные рецепторы принимают сенсорный стимул,
2) сенсорный импульс передается по сенсорным нейронам в ЦНС),
3) ЦНС обрабатывает поступившую сенсорную информацию и определяет наиболее подходящую реакцию на нее,
4) сигналы реакции передаются из ЦНС по двигательным нейронам,
5) двигательный импульс передается мышце и реакция осуществляется.

Сенсорный импульс. Ощущения и физиологический статус организма определяют сенсорные рецепторы. Импульсы вследствие сенсорного стимулирования передаются через сенсорные нервы в спинной мозг. Достигнув его, они “включают” локальный рефлекс на данном уровне или идут в более высокие участки спинного мозга или в головной мозг. Сенсорные пути к головному мозгу могут прерываться в сенсорных участках ствола мозга, в мозжечке, таламусе или коре головного мозга. Участок, где заканчиваются сенсорные импульсы, называется интеграционным центром. Именно здесь сенсорный импульс интерпретируется и передается в двигательный отдел.

Функции интеграционных центров различны:

  • · сенсорные импульсы, которые прерываются (заканчиваются) в спинном мозгу, здесь и интегрируются. Реакцией обычно является простой двигательный рефлекс, представляющий собой наипростейший тип интеграции;
  • · сенсорные импульсы, заканчивающиеся в нижней части ствола мозга, вызывают подсознательные двигательные реакции более высокого уровня и более сложные, чем рефлексы спинного мозга, контроль при передвижении, пребывании в положении сидя или стоя;
  • · сенсорные импульсы, которые заканчиваются в мозжечке, также участвуют в реализации подсознательного контроля движения. Это центр координации, делающий наши движения более плавными, координируя действия различных сокращающихся мышечных групп. Мозжечок вместе с базальными ядрами головного мозга координирует все тонкие и грубые движения тела. Без контроля со стороны мозжечка все выполняемые движения были бы нескоординированными и неконтролируемыми;
  • · сенсорные сигналы, заканчивающиеся в таламусе, достигают уровня сознания, и человек начинает различать все возможные ощущения;
  • · когда сенсорные сигналы попадают в кору головного мозга, человек может дискретно локализовать сигнал. Основная чувствительная зона коры головного мозга, расположенная в постцентральной извилине (в теменной доле), принимает общие сенсорные импульсы от рецепторов кожи, а также проприорецепторов мышц, сухожилий и суставов. В этом участке имеется “карта” всего тела. Стимулирование в определенном участке распознается, и его точное нахождение сразу же становится известным. Таким образом, эта часть головного мозга постоянно обеспечивает нас информацией обо всем, что нас окружает, и о нашей взаимосвязи с окружающей средой.

Двигательный контроль. После поступления в ЦНС сенсорного импульса сразу же возникает реакция двигательного нейрона, независимо от уровня, на котором “остановился” импульс. Контроль скелетных мышц осуществляют импульсы, проводимые двигательными (эфферентными) нейронами, которые берут начало в одном из трех уровней: 1) спинном мозгу; 2) нижних участках головного мозга; 3) двигательном участке коры головного мозга.

По мере перемещения уровня осуществления контроля от спинного мозга к двигательной области коры головного мозга увеличивается сложность движений от простых рефлексов к усложненным движениям, выполнение которых требует участия мыслительных процессов. Двигательные реакции более сложных движений, как правило, берут свое начало в двигательной зоне коры головного мозга.

Рефлекторная деятельность. Рефлексы представляют собой простейшую форму нервной интеграции. Рефлекс представляет собой заранее запрограммированную реакцию. В любой момент при передаче сенсорными нервами особых импульсов ваше тело реагирует мгновенно и одинаково. К тому времени, когда вы осознанно ощутите особый стимул, после того как сенсорные импульсы будут переданы в чувствительную зону коры головного мозга, рефлекторная деятельность, скорее всего, завершится. Вся нервная деятельность протекает очень быстро, однако рефлекс — наиболее быстрый режим реакции, поскольку не требует принятия решения. Возможна лишь одна реакция — нет необходимости рассматривать варианты. Рассмотрим два рефлекса, которые помогают контролировать мышечную функцию:

– Нервно-мышечные веретена

Чувствительные нервные окончания, окутывающие центральный участок нервно-мышечного веретена, сообщают в спинной мозг информацию о его растяжении, информируя ЦНС о длине мышцы. В спинном мозгу сенсорный нейрон взаимодействует с альфа-двигательным нейроном, который вызывает рефлекторное мышечное сокращение экстрафузальных волокон, противодействующее дальнейшему растяжению.

Нервно-мышечное веретено способствует нормальному мышечному сокращению. При стимулировании альфа-двигательных нейронов на сокращение экстрафузальных мышечных волокон гамма-двигательные нейроны также оказываются активизированными и возбуждают окончания интрафузальных волокон. Это приводит к растяжению центрального участка нервно-мышечного веретена и направлению сенсорных импульсов в спинной мозг и затем к двигательным нейронам. В ответ мышца сокращается.

Информация, поступившая в спинной мозг от сенсорных нейронов, связанных с нервно-мышечными веретенами, не обязательно остается на этом уровне. Импульсы также направляются в более высокие отделы ЦНС, обеспечивая головной мозг информацией о точной длине и степени сокращения мышцы, а также степени их изменений. Эта информация необходима для поддержания мышечного тонуса, позы и выполнения движений. Прежде чем головной мозг “скажет” мышце, что делать, он должен знать, что она делает в настоящий момент.

– Нервно-сухожильные веретена

Если нервно-мышечные веретена следят за длиной мышцы, то эти структуры чувствительны к напряжению в мышечно-сухожильном комплексе и действуют подобно тензиометру. Их чувствительность настолько высока, что они могут реагировать на сокращение отдельного мышечного волокна. По сути, они являются тормозными и выполняют защитную функцию, снижая вероятность травмы. При стимулировании они тормозят сократительные (агонисты) мышцы и возбуждают антагонистические.

Уменьшение влияния нервно-сухожильных веретен приводит к растормаживанию активных мышц, обеспечивая более мощное их сокращение. Этот механизм объясняет, по крайней мере, частично, прирост мышечной силы вследствие тренировок силовой направленности.

Высший уровень сенсорно-двигательной (сенсомоторной) интеграции.  Большинство движений включает контроль и координацию со стороны высших центров головного мозга, а именно:

• двигательной области коры головного мозга;
• базальных ядер;
• мозжечка.

Двигательная область коры головного мозга осуществляет контроль тонких и разрозненных мышечных движений. Она находится в лобной доле в передней центральной извилине. Находящиеся здесь нейроны, так называемые пирамидальные, позволяют нам сознательно контролировать движения скелетных мышц. Двигательная область коры головного мозга представляет собой часть головного мозга, которая решает, какое движение вы хотите выполнить. Участки, требующие тончайшего двигательного контроля, в большей степени представлены на ней, тем самым обеспечивается больший нервный контроль.

Тела пирамидных нейронов находятся в двигательной области коры головного мозга, и их аксоны образуют экстрапирамидные пути. Это так называемые корково-спинномозговые пути, поскольку нервные процессы проходят от коры головного мозга до спинного мозга без переключения. Эти пути обеспечивают главный произвольный контроль скелетных мышц.

Базальные ядра. Базальные ядра не являются частью коры головного мозга. Они находятся в белом веществе, глубоко под корой головного мозга. Базальные ядра представляют собой скопления нейронов. Сложные функции их изучены недостаточно; известна их важная роль в инициации движений продолжительного или повторяющегося характера (таких, как движения рук при ходьбе), следовательно, они контролируют сложные полупроизвольные движения, например, ходьбу и бег. Кроме того, они участвуют в поддержании мышечного тонуса и позы.

Мозжечок. Мозжечок играет важнейшую роль в контроле всех быстрых и сложных видов мышечной деятельности. Он помогает синхронизировать двигательную деятельность и быстрый переход от одного движения к другому, следя и внося необходимые изменения в двигательную деятельность, вызванную другими участками головного мозга. Мозжечок содействует функционированию как двигательной области коры головного мозга, таки базальных ядер. Он “смягчает” структуру движений, в противном случае они бы были резкими и не координируемыми.

Мозжечок выполняет роль интеграционной системы, сравнивая запрограммированную деятельность с изменениями, которые происходят в организме, и производя затем соответствующие корригирующие действия с помощью двигательного отдела. Он получает информацию из головного мозга, а также от проприорецепторов, находящихся в мышцах и суставах, которые сообщают о положении, занимаемом в данный момент телом. Кроме того, мозжечок получает зрительные импульсы, а также импульсы о равновесии. Следовательно, он обрабатывает всю поступающую информацию о напряжении и положении всех мышц, суставов и сухожилий, а также положении тела относительно окружающих условий и затем определяет наилучший план действий, направленный на выполнение необходимого движения. Таким образом, в мозжечке формируется и при необходимости корректируется программа выполнения произвольного движения.

Двигательная программа (энграмма). При освоении новой двигательной программы в первое время необходима высокая концентрация внимания. По мере изучения движения необходимость значительной концентрации внимания снижается. Наконец, когда вы овладеваете этим действием, вы можете произвести его практически без сознательного усилия. Выработанные структуры движений “хранятся” в мозгу и при необходимости могут быть воспроизведены. Эти структуры, называющиеся двигательными программами, или энграммами, хранятся в сенсорном и двигательном отделах мозга. В сенсорном отделе хранятся структуры более медленных движений, двигательном — быстрых.

Двигательная реакция. Достигнув двигательного нейрона, электрический импульс идет по нему до нервно-мышечного соединения. Здесь он распространяется во все мышечные волокна, иннервируемые определенным двигательным нервным волокном. Каждое мышечное волокно иннервируется лишь одним двигательным нейроном, в то время как каждый двигательный нейрон в зависимости от функции мышцы иннервирует до нескольких тысяч мышечных волокон.

Упорядоченное рекруитирование мышечных волокон. Нервно-мышечная активность дифференцируется на основании фиксированного упорядоченного рекруитирования двигательных единиц. Чем больше сила, необходимая для выполнения определенного движения, тем больше вовлекается двигательных единиц.

В заключении следует отметить, что механизм сенсомоторной интеграции лежит в основе развития двигательно-координационных способностей (ловкости) человека.

Comments are closed.